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REMARKS ON ORTHOGONALITY SPACES

JOHN HARDING AND REMI SALINAS SCHMEIS

Abstract. We provide two results. The first gives a finite graph constructed from con-
sideration of mutually unbiased bases that occurs as a subgraph of the orthogonality space
of C3 but not of that of R3. The second is a companion result to the result of Tau and
Tserunyan [6] that every countable graph occurs as an induced subgraph of the orthogonal-
ity space of a Hilbert space. We show that every finite graph occurs as an induced subgraph
of the orthogonality space of a finite orthomodular lattice and that every graph occurs as
an induced subgraph of the orthogonality space of some atomic orthomodular lattice.
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1. Introduction

Orthomodular posets (omps) [5] are a certain type of bounded poset with complementarity
involution arising as models of the propositions of a quantum system. Orthomodular lattices
(omls) [3] are omps that are lattices. The motivating example is the projection lattice
P(H) of a Hilbert space. Each atomic orthomodular poset P yields a symmetric loopless
graph called its orthogonality space (X,⊥) where X is the set of atoms of P and ⊥ is
the orthogonality relation between atoms. For a Hilbert space H, the orthogonality space
associated to P(H) is given by the 1-dimensional subspaces of H with orthogonality being
usual orthogonality of subspaces. This orthogonality space represents the pure states of a
quantum system represented by H.

A graph G is a subgraph of a graph H if the vertex and edge sets of G are subsets of those
of H and G is an induced subgraph of H if additionally the edge set of G is the restriction
of the edge set of H to the vertices of G. By a graph embedding f : G → H we mean a
one-one mapping where x adjacent to y implies f(x) is adjacent to f(y), and this embedding
is full if additionally f(x) adjacent to f(y) implies that x is adjacent to y. So an embedding
is a graph isomorphism with a subgraph of H and a full embedding is a graph isomorphism
with an induced subgraph of H. Our purpose here is to provide two results related to graph
embedding and orthogonality spaces of atomic omls.
The first result gives a finite graph that occurs as a subgraph of the orthogonality space

of the oml P(C3) but does not occur in the orthogonality space of P(R3). That there is
such a finite graph is not a surprise, the orthogonality space of P(C3) determines the order
structure of P(C3) in a simple way, and well-known coordinatization theorems of projective
geometry [2] allow one to reconstruct the field C from the order structure of P(C3) via the
coordinatization theorem. Thus, one can find a configuration showing that −1 has a square
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root in P(C3), but of course not in P(R3). However, construction of such a configuration and
its expression in the orthogonality space setting will be somewhat complicated. We provide
a relatively simple configuration of atoms, expressed in the language of Greechie diagrams,
that characterizes when one ray a of R3 or C3 is unbiased with respect to three rays b, c, d
that arise from an orthonormal basis, that is, when the angles between a and b, c, d are equal.
Using the fact that C3 has a pair of mutually unbiased bases while R3 does not, we obtain
a configuration that exists in the orthogonality space of P(C3) but not in that of P(R3).

The second result deals with full graph embeddings of graphs into orthogonality graphs of
atomic omls. Tau and Tserunyan [6] proved that every at most countable graph can be fully
embedded into the orthogonality space of a separable Hilbert space, and their construction
shows that a finite graph with maximum clique size n can be embedded into the orthogonality
graph of P(Rn) or P(Cn). They provide an example of an uncountable graph that cannot be
fully embedded into the orthogonality graph of P(H) for any Hilbert space H. We provide
a complementary result, that any finite graph can be fully embedded into the orthogonality
graph of a finite oml. The result of Tau and Tserunyan fully embeds a finite graph into the
orthogonality space of a finite height oml, but of course not into a finite oml. Either our
result, or that of Tau and Tserunyan, can be used to show that every graph can be fully
embedded into the orthogonality graph of some atomic oml.

2. The first result

In this section, we provide a finite graph that can be embedded into the orthogonality
graph of the projection lattice P(C3) but not into that of P(R3). Orthogonality graphs can
be represented in the usual graph-theoretic way using vertices and edges, or they can be
represented by “Greechie diagrams” [3] which do not directly provide the edges, but instead
describe the maximal cliques of the graph, which of course is equivalent to describing the
edges. In the following, by a Greechie diagram we will mean a collection of vertices and
a collection of sets of those vertices that arises as the vertex set and the set of maximal
cliques of some graph. We find Greechie diagrams more convenient to use in our context
than graphs and they are the customary tool when working with orthogonality spaces. For
example, in the figure at left below is a Greechie diagram showing a graph with two maximal
cliques, which we call blocks, of three elements each, {a, b, c} and {c, d, e}. This same graph
is shown in the usual graph-theoretic way in the diagram at right. We note that maximal
cliques, or blocks, in our Greechie diagrams are given by points connected with a straight
line or arc with no sharp bends.

a

b

c

d

e

c

a

b d

e

Since we are dealing both with R3 and C3, it is efficient to use notation that allows us
to treat both situation at the same time, so we talk of the conjugate z of a real or complex
number z. When z is real, z is simply z.
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Definition 2.1. If u = (u1, u2, u3) and v = (v1, v2, v3) are vectors in R3 or C3 we define their
“cross product”

u× v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

For R3, this is the usual cross product. For C3, it is known that there is no operation
that satisfies all common properties of the usual cross product, however we we do have the
following property, which is what we will need.

Lemma 2.2. Let u, v be linearly independent vectors in R3 or C3. Then for w = u × v
we have that w is non-zero vector that is orthogonal to both u and v and ⟨w⟩ is the unique
1-dimensional subspace that is orthogonal to both ⟨u⟩ and ⟨v⟩.

Proof. That w is non-zero and orthogonal to both u and v are routine calculations. For the
statement about uniqueness, if ⟨w⟩ and ⟨w′⟩ were distinct 1-dimensional subspaces orthogonal
to both ⟨u⟩ and ⟨v⟩, then their sum would be a 2-dimensional subspace orthogonal to both
⟨u⟩ and ⟨v⟩, hence their sum would be equal to ⟨u⟩⊥ and to ⟨v⟩⊥, giving ⟨u⟩ = ⟨v⟩. □

We describe some basic properties of the Greechie diagrams of P(R3) and P(C3) that are
well known [3]. First, the diagram of P(R3) can be embedded into that of P(C3). For either
diagram, all of its blocks consist of 3 pairwise orthogonal 1-dimensional subspaces, in effect,
an orthonormal basis up to phase factors. Two blocks are either disjoint or share exactly
one atom. An n-loop in a Greechie diagram is a sequence B1, . . . , Bn of distinct blocks so
that any Bi and Bi+1 share an atom where addition is taken modulo n. It is well known,
and the proof of uniqueness in Lemma 2.2 shows, that the Greechie diagrams of P(R3) and
P(C3) have no loops of order 4 or less. Further properties of these Greechie diagrams come
from Lemma 2.2. Suppose ⟨u⟩ and ⟨v⟩ are distinct 1-dimensional subspaces, and w = u× v.
If ⟨u⟩ and ⟨v⟩ are orthogonal, then ⟨w⟩ is the third element comprising a block with ⟨u⟩ and
⟨v⟩, and if ⟨u⟩ and ⟨v⟩ are not orthogonal, then ⟨w⟩ is the unique element in the intersection
of two blocks, one containing ⟨u⟩ and ⟨w⟩ and the other containing ⟨v⟩ and ⟨w⟩.

⟨u⟩ ⟨w⟩ ⟨v⟩
⟨u⟩ ⟨v⟩

⟨w⟩

We are dealing with Greechie diagrams to represent graphs, and say that one Greechie
diagram is a sub-diagram of another if the graph associated with the first Greechie diagram
is a subgraph of the graph associated with the other. This means that the vertices of the
first Greechie diagram are contained in the second, and whenever two vertices are part of a
block in the first Greechie diagram, they are part of a block in the second.

In the following, for a vector such as v = (x, y, z), to improve readability we write ⟨x, y, z⟩
for the one-dimensional subspace spanned by v in place of the correct ⟨(x, y, z)⟩.

Lemma 2.3. For any non-zero x, y, z belonging to C (respectively R), the Greechie diagram
depicted in Figure 1 occurs as a sub-Greechie diagram of that of the orthogonality space
P(C3) (respectively P(R3)), where the elements of this diagram are given by the following
one-dimensional subspaces
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u

a1

b1

c1

a2

b2

c2

a3

b3

c3

b12 b13

b23

d3
d1

d2

b112 b113

b212 b313

b223 b323

Figure 1. A partial configuration

a1 = ⟨1, 0, 0⟩ b1 = ⟨0, y, z⟩ c1 = ⟨0, z,−y⟩ d1 = ⟨−yy − zz, xy, xz⟩
a2 = ⟨0, 1, 0⟩ b2 = ⟨x, 0, z⟩ c2 = ⟨z, 0,−x⟩ d2 = ⟨xy,−xx− zz, yz⟩
a3 = ⟨0, 0, 1⟩ b3 = ⟨x, y, 0⟩ c3 = ⟨y,−x, 0⟩ d3 = ⟨xz, yz,−xx− yy⟩

b12 = ⟨yz, xz,−xy⟩ b112 = ⟨xyy + xzz,−yzz, yyz⟩ b212 = ⟨−xzz, xxy + yzz, xxz⟩
b13 = ⟨yz,−xz, xy⟩ b113 = ⟨xyy + xzz, yzz,−yyz⟩ b313 = ⟨−xyy, xxy, xxz + yyz⟩
b23 = ⟨−yz, xz, xy⟩ b223 = ⟨xzz, yzz + xxy,−xxz⟩ b323 = ⟨xyy,−xxy, xxz + yyz⟩
u = ⟨x, y, z⟩

Proof. The same proof holds for the real and complex cases. Since x, y, z are non-zero, u
is not orthogonal to any ai for i = 1, 2, 3 and this implies that for a given value of i, the
elements u, ai, bi, ci, di are distinct and the orthogonalities among them are exactly those
shown in Figure 1. Further, the expressions for these elements in terms of x, y, z are the ones
given by cross products. If for i ̸= j some element of {ai, bi, ci, di} were equal to some element
of {aj, bj, cj, dj} then we would have a loop of order 4 or less, and this is impossible. So all the
elements among the collection ai, bi, ci, di for i = 1, 2, 3 are distinct and the orthogonalities
among them are at least the ones shown in the figure. By looking at the expressions for these
elements, it is clear that ai ̸⊥ bj, cj, dj for i ̸= j. By computing inner products and noting
that none of x, y, z are 0, we see also that bi ̸⊥ bj, cj for i ̸= j since these inner products are
all a product of some of the variables x, y, z and their conjugates. Note that bi cannot be
orthogonal to dj for i ̸= j since this would produce a 4-loop. Thus, not only are the elements
in the collection ai, bi, ci, di for i = 1, 2, 3 all distinct, the orthogonalities among them are
exactly the ones shown. We let X = {ai, bi, ci, di | i = 1, 2, 3}.
For i < j we have shown that bi ̸⊥ bj, so for given i < j the elements bi, bj, bij, biij, bjij are

distinct and the orthogonalities among them are exactly those shown in the figure. Further,
the expressions for them in terms of x, y, z are those given by cross products. For i < j,
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the element bij does not belong to X since bij is orthogonal to both bi and bj and none of
the elements in X have this property. If biij were to belong to X, it could only be one of
ai or ci since biij ⊥ bi and ai, ci are the only elements in X orthogonal to bi. But none of
the entries in the description of biij can be 0, so biij does not belong to X, and a similar
argument shows that bjij does not belong to X. Finally, none of the elements among the
bi, bij, biij, bjij can be equal to each other since this would produce a loop of order 4 or less
from the hexagon in the diagram. Thus all of the elements in this diagram are distinct and
all shown orthogonalities in the figure occur. So this figure is a sub-Greechie diagram of the
Greechie diagram of the orthogonality space. □

The proof of the previous lemma comes close to showing that Figure 1 is a full Greechie
sub-diagram. The only possible additional orthogonalities that are not shown in the Figure 1
must involve an element of the hexagon. To have an additional orthogonality between two
elements of the hexagon, the only possibility that does not produce a 4-loop is between
two of the middle points on opposite sides, such as b212 and b313, but computing such inner
products shows that they are always strictly positive real numbers, so this is not possible. So
the only possible additional orthogonalities that are not shown in the Figure 1 must involve
an element of the hexagon that is not one of the bi and an element that does not lie on the
hexagon. This however can happen, and is the basis of the following definition.

Definition 2.4. For a block ⟨a1⟩, ⟨a2⟩, ⟨a3⟩ of P(C3) (respectively P(R3)), a one-dimensional
subspace ⟨u⟩ is a center for this block if the diagram in Figure 2 is a sub-Greechie diagram
of the orthogonality space of P(C3) (respectively P(R3)).

For vectors u, v in C3 or R3, the angle θ between the subspaces ⟨u⟩ and ⟨v⟩ is given by

cos θ =
|⟨u, v ⟩|
∥u∥ ∥v∥

.

A one-dimensional subspace ⟨u⟩ is unbiased with respect to a block ⟨a1⟩, ⟨a2⟩, ⟨a3⟩ if the
angle between ⟨u⟩ and ⟨ai⟩ is the same for each i = 1, 2, 3.

u

a1

b1

c1

a2

b2

c2

a3

b3

c3

b12 b13

b23

d3
d1

d2

b112 b113

b212 b313

b223 b323

Figure 2. Diagram for ⟨u⟩ to be a center of the block of ⟨a1⟩, ⟨a2⟩, ⟨a3⟩.
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Theorem 2.5. In either P(C3) or P(R3), a one-dimensional subspace ⟨u⟩ is a center for a
block ⟨a1⟩, ⟨a2⟩, ⟨a3⟩ iff ⟨u⟩ is unbiased with respect to this block.

Proof. Since a unitary transformation preserves angles and there is a unitary transformation
taking any block to any other, we may assume without loss of generality that ⟨a1⟩ = ⟨1, 0, 0⟩,
⟨a2⟩ = ⟨0, 1, 0⟩, ⟨a3⟩ = ⟨0, 0, 1⟩ and ⟨u⟩ = ⟨x, y, z⟩. We may further assume that ⟨u⟩ is not
orthogonal to any of the ⟨ai⟩ for i = 1, 2, 3 since this is the case if either ⟨u⟩ is a center of
this block or if ⟨u⟩ is unbiased with respect to this block. Thus all of x, y, z are non-zero
and we can apply Lemma 2.3 to obtain that the configuration of Figure 1 is a sub-Greechie
diagram and its elements are as described in terms of x, y, z in that lemma.
By definition, ⟨u⟩ is a center for ⟨a1⟩, ⟨a2⟩, ⟨a3⟩ iff Figure 2 occurs as a sub-Greechie

diagram, and in view of the fact that Figure 1 is a sub-diagram, this occurs iff c1 ⊥ c23,
c2 ⊥ b13 and c3 ⊥ b12. Note that the inner products are given by

⟨ c1, b23 ⟩ = xzz − xyy ⟨ c2, b13 ⟩ = yzz − yxx ⟨ c3, b12 ⟩ = zyy − zxx.

Since x, y, z are non-zero, having the indicated orthogonalities for ⟨u⟩ to be a center is
equivalent to having |x| = |y| = |z|, which in turn is equivalent to having |⟨ ai, u ⟩| for
i = 1, 2, 3 all be equal, hence to having ⟨u⟩ be unbiased with respect to ⟨a1⟩, ⟨a2⟩, ⟨a3⟩. □

A collection of orthonormal bases of a finite-dimensional inner product space is said to be
mutually orthogonal if the angle between ⟨u⟩ and ⟨v⟩ is the same whenever u and v come
from different bases. It is well known that one can find 4 mutually unbiased bases in C3,
for instance, using ω for a cube root of unity, the orthonormal bases are the appropriately
scaled versions of

(1, 0, 0) (0, 1, 0) (0, 0, 1)
(1, 1, 1) (1, ω, ω2) (1, ω2, ω)
(1, ω, ω) (1, ω2, 1) (1, 1, ω2)
(1, ω2ω2) (1, ω, 1) (1, 1, ω)

It is also well known that there is not even a pair of mutually unbiased bases of R3. In fact,
there are not even two orthogonal vectors in R3 that are unbiased with respect to the same
orthonormal basis. It is enough to show this for the standard basis, and it is clear, that
u = ⟨x, y, z⟩ is unbiased with respect to the standard basis iff |x| = |y| = |z| and it is not
possible to have two orthogonal non-zero vectors in R3 satisfy this property since one cannot
find an assignment of signs with ±1± 1± 1 = 0.

Theorem 2.6. There is a Greechie diagram that can be embedded into the Greechie diagram
of the orthogonality space of P(C3) but not into that of P(R3).

Proof. Take two copies of the Greechie diagram of Figure 2 and glue them together by
identifying the elements on the circular rims, then add a line connecting the two centers to
indicate that they are orthogonal. If desired, add a third point to this line so that all blocks
have 3 elements, but this is not necessary. The resulting configuration is a sub-Greechie
diagram of the orthogonality space of P(C3) since it occurs with the elements of the circular
rim given by the standard basis vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) and with the two centers
being two elements from one of the mutually unbiased bases described above, for instance
(1, 1, 1) and (1, ω, ω2). This configuration does not occur as a sub-Greechie diagram of P(R3)
since we noted that two centers of a block in R3 cannot be orthogonal. □
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3. The second result

To begin this section, we first briefly describe some of the results of Tau and Tserunyan on
embedding graphs into the orthogonality space of a Hilbert space. This is for the convenience
of the reader, and also, as far as we know, this result is recorded only on the website [6].
Our presentation of the result that we provide is modified from that given in [6].

Theorem 3.1. Let G be a finite graph whose vertices are v1, . . . , vn. Then there is a basis
u1, . . . , un of Rn such that vi and vj are adjacent iff ui and uj are orthogonal. Furthermore,
such a basis can be chosen so that the inner product of ui and uj is ≥ 0 for all i, j.

Proof. We proceed by induction. The base case is trivial. Suppose G has n+ 1 vertices and
let u1, . . . , un be a basis of Rn given by the inductive hypothesis for the subgraph {v1, . . . , vn}.
We will produce vectors w1, . . . , wn+1 in Rn ⊕ Rn that span an n + 1-dimensional subspace
and are such that wi and wj are orthogonal iff vi and vj are adjacent and with the inner
product of wi and wj positive for all i, j. This will prove the theorem. Let e1, . . . , en be an
orthonormal basis of Rn. For i ≤ n let wi = ui if vi is adjacent to vn+1 and set wi = ui + ei
otherwise. Set wn+1 = e1 + · · · + en. Then for i, j ≤ n + 1 inner product of wi and wj is
≥ 0 with equality iff vi is adjacent to vj and a routine argument shows that w1, . . . , wn+1 are
linearly independent. □

Using this, one can show that every at most countable graph G can be strongly embedded
into the orthogonality graph of a separable Hilbert space H meaning that there is a one-
one mapping f : G → H such that vertices u and v are adjacent in G iff f(u) and f(v) are
orthogonal. Indeed, let the vertices of G be enumerated (vn)N and for each n let u1,n, . . . , un,n

be a basis of Rn as given by the theorem for the subgraph {v1, . . . , vn} of G. Let H be the
Hilbert space sum

⊕
NRn and for each k ∈ N set

uk =
∞∑
n=k

1

2n
uk,n.

Since inner products of the chosen basis vectors in each component Rn are positive it follows
that ui and uj are orthogonal iff vi and vj are adjacent.

The main result of Tau and Tserunyan is that there is an uncountable bipartite graph
that cannot be strongly embedded into the orthogonality graph of any Hilbert space. We
will not reproduce this in detail here since it is not as pertinent to our investigation, but
only provide a brief a brief sketch. The key point is the following lemma.

Lemma 3.2 (Tau). If (ui)I is an infinite family of unit vectors in a (perhaps non-separable)
Hilbert space and the inner product ⟨ui, uj⟩ takes constant value θ, then θ ≥ 0 and there
is a vector v and an orthonormal family (wi)I all of which are orthogonal to v and with
ui = v +

√
1− θwi for each i ∈ I.

The lemma is established by showing the convergence of the net (vF ) indexed over the
finite subsets F ⊆ I where vF = 1

|F |
∑

{vi | i ∈ F} is the “average”. To construct the

bipartite graph, one takes a set κ of sufficiently large cardinality and constructs a bipartite
graph between the sets of vertices U = {uJ} where J ranges over the subsets of κ and
V = {vi} where i ranges over κ, and then putting an edge between uJ and vi iff i ∈ J . If

7



U, V are unit vectors in a Hilbert space H, since there only continuum possibilities for the
value of an inner product, Erdös-Rano gives an uncountable subset J ⊆ κ with all inner
product ⟨vi, vj⟩ taking the same value θ. Partitioning J into two uncountable sets J0 and J1.
Then uJ0 is orthogonal to each vi for i ∈ J0 so is orthogonal to v, and uJ0 is non-orthogonal
to each vi = v +

√
1− θwi for i ∈ J1, giving uJ0 is non-orthogonal to all of the uncountably

many orthonormal vectors wi for i ∈ J1.
Theorem 3.1 shows that every finite graph G can be strongly embedded into the orthogo-

nality graph of a finite-height oml namely a projection lattice P(Rn) where n is |G|. If we
broaden our perspective beyond projection lattices we can go farther.

Theorem 3.3. Every finite graph can be strongly embedded into the orthogonality graph of
a finite oml.

To prove Theorem 3.3 we first establish several lemmas. For these, we find it convenient
to introduce some notation. For an oml L and a ∈ L we write ↑L a for {b ∈ L | a ≤ b}.
The subscript is because we often consider such upsets in subalgebras of a given oml. For
elements x, y of an oml we write x ⊥ y to indicate x, y are orthogonal. For elements u, v of
a graph G we write u ⊥ v to indicate that u, v are adjacent.

Lemma 3.4. For a finite oml L there is a finite oml M and a one-one map g : L → M
such that

(1) x ⊥ y ⇔ g(x) ⊥ g(y) for all x, y ∈ L \ {0},
(2) g(x) ≤

∨
g(A) ⇔ x ∈ A for all x ∈ L and A ⊆ L.

Proof. Let P(L) be the powerset of L and note that this is a Boolean algebra, hence an oml.
Set M = L×P(L) and note that M is a finite oml. Define g(x) = (x, {x}). If x, y ∈ L\{0},
then x ⊥ y iff g(x) ⊥ g(y) since distinct atoms {x} and {y} are orthogonal in any Boolean
algebra. Note that 0 ⊥ 0, yet g(0) ̸⊥ g(0), so the described qualification is necessary. If
x ∈ L and A ⊆ L, then x ∈ A trivially implies g(x) ≤

∨
g(A) as each element of a set lies

beneath its join. Conversely, if g(x) = (x, {x}) lies under
∨
g(A) = (

∨
A,A), then {x} ⊆ A,

so x ∈ A. □

For the next step in the construction, we use a technique known as “Kalmbach’s coatom
extension” [3, p. 310]. To describe this, let L be an oml and e ∈ L\{0}. Then [0, e′]∪ [e, 1] is
a subalgebra of L. It is also a subalgebra when e = 0, but this case would make pathologies
in our treatment and we exclude it. Then ([0, e′]∪ [e, 1])×2 is an oml that has a subalgebra
([0, e′]× {0}) ∪ ([e, 1]× {1}) that is isomorphic to the subalgebra [0, e′] ∪ [e, 1] of L.
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e′
e

(e′, 0)
(e, 0)

(1, 0)

(e′, 1)
(e, 1)

(0, 1)

The omls L and ([0, e′]∪ [e, 1])× 2 can be “pasted” over the isomorphic subalgebras that
are shaded in the figure. The resulting ordering and orthocomplementation are effectively
the union of those from the components. This is an instance of the technique known as
Greechie’s “paste job” and found in [3, p. 306] and in more detail in [4]. Note that the
element a = (e, 0) is an atom under e ∼= (e, 1). Properties of the coatom extension are
described below.

Lemma 3.5. Let L be a finite oml and e ∈ L \ {0}. Then there is a finite oml M with
L ≤ M and an atom a ∈ M with

(1) a ̸∈ L and a < e,
(2) ↑M a ∩ L = ↑L e = ↑M e,
(3) If x is an atom of L and x ̸= e, then x is an atom of M .

Lemma 3.6. If L is a finite oml and x1, . . . , xn ∈ L\{0} are distinct, then there is a finite
oml M with L ≤ M and distinct atoms a1, . . . , an ∈ M \ L with ↑M ai ∩ L = ↑L xi and
ai ⊥ aj iff xi ⊥ xj for all i, j ≤ n.

Proof. The proof is by induction on n. When n = 1, use Lemma 3.5. Now suppose
x1, . . . , xn+1 ∈ L\{0} are distinct. By the inductive hypothesis there is a finite oml M with
L ≤ M and distinct atoms a1, . . . , an ∈ M \L with ↑M ai ∩L = ↑L xi and ai ⊥ aj iff xi ⊥ xj

for i, j ≤ n. Apply Lemma 3.5 to M using e = xn+1 to obtain a finite oml N with M ≤ N
and an atom an+1 ∈ N \M with ↑N an+1 ∩M = ↑M xn+1, and so by intersecting both sides
of this equality with L and using that xn+1 ∈ L, with ↑N an+1 ∩ L = ↑L xn+1. So we have a
finite oml N with L ≤ N and distinct atoms a1, . . . , an+1 ∈ N \ L with ↑N ai ∩ L = ↑L xi

for each i ≤ n+ 1. It remains to show the statements about orthogonality.
For i, j ≤ n+ 1, if xi ⊥ xj, then since ai ≤ xi and aj ≤ xj, we have ai ⊥ aj. It remains to

show that if i, j ≤ n+ 1 and ai ⊥ aj, then xi ⊥ xj. If i, j ≤ n, this is given by our inductive
hypothesis. Suppose for the remaining case that i ≤ n and ai ⊥ an+1. Then an+1 ≤ a′i.
Since a′i ∈ M and ↑N an+1 ∩M = ↑M xn+1, we have xn+1 ≤ a′i. Then ai ≤ x′

n+1, and since
x′
n+1 ∈ L and ↑N ai ∩ L = ↑L xi we have xi ≤ x′

n+1, hence xi ⊥ xn+1. □

Lemma 3.7. If G is a finite loopless undirected graph, then there is a finite oml L and a
one-one map f : G → L \ {0} with x ⊥ y iff f(x) ⊥ f(y) for all x, y ∈ G.

Proof. By induction on |G| = n. For n = 1 we can map the single vertex of G to the top
element of the 2-element Boolean algebra. Suppose |G| = n + 1. If G is a complete graph,
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then we can map G to the atoms of a finite Boolean algebra with n + 1 atoms. So assume
there is a vertex w ∈ G that is not adjacent to some other vertex. Let H = G \ {w} and let
P be the set of vertices adjacent to w, all of which belong to H, and Q = H \ P .

P Qw

H

G

Since the subgraph H of G has n elements, the inductive hypothesis gives a finite oml
L and a one-one mapping h : H → L \ {0} with x ⊥ y iff h(x) ⊥ h(y). By Lemma 3.4
there is a finite oml M and a one-one map g : L → M such that u ⊥ v iff g(u) ⊥ g(v) for
all u, v ∈ L \ {0} and with g(u) ≤

∨
g(A) iff u ∈ A for all u ∈ A and A ⊆ L. Then the

composite k = g ◦ h satisfies x ⊥ y iff k(x) ⊥ k(y) for all x, y ∈ H and k(x) ≤
∨
k(A) iff

x ∈ A for all x ∈ H and A ⊆ H.
Since we have assumed that w is not adjacent to some vertex in G, we have that P ̸= H.

Let e ∈ M be such e′ =
∨

k(P ). For all x ∈ H we have k(x) ≤
∨
k(P ) iff x ∈ P , therefore

e′ ̸= 1, and hence e ̸= 0. Apply the coatom extension Lemma 3.5 to M with the element
e ∈ M \ {0} to obtain a finite oml N with M ≤ N and a ∈ N \M such that a is an atom
of M and ↑M a ∩ N = ↑M e. Thus for x ∈ H we have x ∈ P iff k(x) ≤ e′ iff e ≤ k(x)′, and
since k(x)′ ∈ M , this occurs iff a ≤ k(x)′, hence iff k(x) ⊥ a. Define f : G → N by

f(x) =

{
k(x) if x ∈ H

a if x = w

Since a ̸∈ M and k is one-one, f is one-one. Since M ≤ N , if x, y ∈ H and x ⊥ y iff
k(x) ⊥ k(y), for x, y ∈ H we have x ⊥ y iff f(x) ⊥ f(y). Finally, for x ∈ H, by the definition
of P we have x ⊥ w iff x ∈ P , hence iff k(x) ≤ e′, and thus iff f(x) = k(x) ⊥ a = f(w). □

We return to the proof of Theorem 3.3. Suppose G is a finite graph with vertices x1, . . . , xn.
By Lemma 3.7 there is a finite oml L and a one-one mapping f : G → L \ {0} such that
xi ⊥ xj iff f(xi) ⊥ f(xj) for all i, j ≤ n. By Lemma 3.6 there is a finite oml M and
distinct atoms a1, . . . , an ∈ M \ L with ai ⊥ aj iff f(xi) ⊥ f(xj) for all i, j ≤ n. Let
h : G → M \ {0} be given by setting h(xi) to be the atom ai of M . Then f is one-one and
xi ⊥ xj iff h(xi) ⊥ h(xj).

Corollary 3.8. Every graph can be strongly embedded into the orthogonality graph of an
atomic oml.

Proof. We use the fact that every finite graph can be strongly embedded into the orthogo-
nality graph of an oml. This is provided either by the result of Tao and Tserunyan or by
Theorem 3.3. Suppose G is a graph. Construct a first-order language having a constant
symbol cv for each vertex v of G, a binary predicate E for edges, constants 0, 1, a unary
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operation symbol ′ and binary operation symbols ∧ and ∨. We consider a set Σ of first-order
sentences that include sentences for the oml axioms and a sentence saying that each non-
zero element has an atom beneath it (note that the order ≤ of a lattice can be expressed in
a first-order way from its meet operation). For each vertex v we include the sentence saying
that cv is an atom, and for each pair of vertices u, v of G we include the sentence E(cu, cv) if
u, v are adjacent in G and we include the sentence ¬E(cu, cv) if u, v are not adjacent in G.
Since every finite graph can be strongly embedded into the orthogonality graph of an atomic
oml, every finite subset of Σ has a model. So by the compactness theorem, Σ has a model,
hence G can be strongly embedded into the orthogonality graph of an atomic oml. □
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